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1 Synaptic Weights from Receptive Fields and Stim-

ulus Reconstruction

We consider the optimal assignments of weights to the coding of an input. We use the
”Normative Approach” to predict the input from the firing properties of the cognizant
sensory neurons. This does not mean that we can perfectly reconstruct or predict the
form of the input from underlying neuronal response; perception is only as good as the
receptors.

We take the inputs as Ii(t). This could correspond to the value of the output of a
photoreceptor or, in a synthetic world, to the pixel of a camera at a time t. We take the
output of a neuron as Vi(t), where V is a positive number. Then

Vi(t) =
∑
k

WikIk(t) (1.1)

where Wik connects input Ik to the i-th neuron. This just corresponds to a linear, one
level network, more properly a Perceptron. We are going to keep the clunky form of
double indices and sums to maintain clarity, much as one could write Vi(t) as the inner
product Vi(t) = WiI(t).

How do we choose the Wiks? We can choose them so that the Vi(t)s are the best
predictor of the input. Then we look at the reconstruction algorithm, given by

Ik(t) =
∑
i

WikVi(t) (1.2)

Let’s form a quadratic error function and minimize the argument that minimizes the error.
we are going to do this in two ways. First, to get the optimal output and see if we recover
our original input scheme. This will act as a form of self consistency. Second, to get the
optimal form of the connection strengths, i.e., the get a rule for the online learning of new
inputs.

First, let’s find the output that minimizes the error at each time point, and for each
reconstructed input, where

Error(i, k; t) = ∥ Ik(t) − Wik(t− 1)Vi(t) ∥2 (1.3)

=
[
∥ Ik(t) ∥2 − 2Ik(t)Wik(t− 1)Vi(t) + ∥ Wik(t− 1)Vi(t) ∥2

]
=

[
∥ Ik(t) ∥2 − 2Ik(t)Wik(t− 1)Vi(t) + ∥ Wik(t− 1) ∥2 V 2

i (t)
]

where the time variable for the Wik refers to the extent of updating.
Let’s find the argument Vi that minimizes the error, i.e., arg min. Then

Vi(t) = arg minVi

[∑
k

Error(i, k; t)

]
(1.4)
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= arg minVi

∑
k

[
−2Ik(t)Wik(t− 1)Vi(t) + ∥ Wik(t− 1) ∥2 V 2

i (t)
]

= arg minVi

∑
k

∣∣∣∣∣∣∣∣
∑

k Wik(t− 1)Ik(t)

∥ ∑
k Wik(t− 1) ∥2

− Vi(t)
∣∣∣∣∣∣∣∣2 ∣∣∣∣∣∣∣∣∑

k

Wik(t− 1)
∣∣∣∣∣∣∣∣2

=

∑
k Wik(t− 1)Ik(t)

∥ ∑
k Wik(t− 1) ∥2

.

This is the same result we had previously to within a normalization. The output of each
cell is the inner product of the input with the weights. So we are self-consistent.

Let’s find a rule for the argument Wik(t) that minimizes the error, i.e., arg minWi,k
,

over all time. Then

Wik(T ) = arg minWik

[
T∑
t=1

Error(i, k; t)

]
(1.5)

= arg minWik

T∑
t=1

[
−2Ik(t)Wik(t− 1)Vi(t) + ∥ Wik(t− 1) ∥2 V 2

i (t)
]

= arg minWik

T∑
t=1

∣∣∣∣∣∣∣∣Ik(t)Vi(t)

Vi(t)
−Wik(t− 1)

∣∣∣∣∣∣∣∣2 V 2
i (t)

=

∑T
t=1 Ik(t)Vi(t)∑T

t=1 V
2
i (t)

.

so we see that the weights are the cross-correlation of the input with the output. To get
an incremental rule, we note

Wik(T − 1) =

∑T−1
t=1 Ik(t)Vi(t)∑T−1

t=1 V 2
i (t)

(1.6)

=

∑T
t=1 Ik(t)Vi(t)− Ik(T )Vi(T )∑T

t=1 V
2
i (t)− V 2

i (T )
.

so
T∑
t=1

Ik(t)Vi(t) = Wik(T − 1)
T∑
t=1

V 2
i (t)−Wik(T − 1)V 2

i (T ) + Ik(T )Vi(T ) (1.7)

Combining terms by substituting Equation 1.7 into Equation 1.5, we get

∆Wik(T ) ≡ Wik(T )−Wik(T − 1) (1.8)

=
Vi(T ) [Ik(T )−Wik(T − 1)Vi(T )]∑T

t=1 V
2
i (t)

, .

which is our learning rule.
The change in weight has a contribution that appears like a Hebb rule, except that the

change decrements sustained plasticity. The rule depends only of pre- and post-synaptic
activity and the previous value of the weight; all of this is biologically plausible. The
normalization by the square of the output is worry some; presumably one must add a
feature that cuts this term off after some long time so that the denominator is simply a
term that depends of average (square) activity.
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The learning rule is the starting point for work by Oja (1982) showing that such a rule
leads to weights that approximate the first principle component of the input. Let’s plug
in for Vi(T ),

∆Wik(T ) =

∑
m

Wim(T−1)Cmk

∥
∑

k
Wik(t−1)∥2 −

∑
m,n

Wim(T−1)CmnWin(T−1)

∥
∑

k
Wik(t−1)∥4 Wik(T − 1)∑

m,n

∑T

t=1
Wim(T−1)CmnWin(T−1)

∥
∑

k
Wik(t−1)∥4

(1.9)

=
∥
∑

k Wik(T − 1) ∥2
∑

mWim(T − 1)Cmk −
∑

m,nWim(T − 1)CmnWin(T − 1)Wik(T − 1)∑
m,n

∑T
t=1Wim(T − 1)CmnWin(T − 1)

where

Cmn =
1

T

T∑
t=1

Im(t)In(t). (1.10)

is the correlation matrix of the inputs and may be assumed to achieve a set of roughly
constant values. Switching back to vector notation,

dW(t)

dt
=

∥ W(t) ∥2 CW(t)−
[
WT (t)CW(t)

]
W(t)

WT (t)CW(t)
(1.11)

we see that the expression is in the form of the Ojas (1982) rule for which the W will
select the dominant eignevector of the correlation matrix or equivalently the first principle
component of the correlation matrix. In steady state, dW(t)/dt = 0, which leads to the
eigenvalue equation

CW =
WTCW

∥ W ∥2
W (1.12)

where W = W(t → ∞). The weights vector W will be dominated by the leading
eigenvector of the correlation matrix of the inputs, C. The associated eigenvalue is just

WTCW

∥ W ∥2
,

as can be readily checked using the same approach that we used to show that a linear
recurrent system can only store one memory, i.e., the dominant eigenvector,

Rather impressively, Chklovskii recently showed that this approach applied to an input
space of odorants yields a matrix that matches the response of selected olfactory receptor
neurons cells.
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Figure 1: Observed versus calculated synaptic weights for responses in the fly From Chklovskii

.
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